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Abstract

We present a quantitative analysis method of the

characteristics of a curve, for �nding what an aesthetic

curve is. A number of designer drawn curves were ana-

lyzed by this method. As a result, we found that the de-

signer controlled the curvature change with a self-a�ne

property, when he produced a curve in design work. In

other words, the designer sees a curve with a self-a�ne

property as an aesthetic curve. On the basis of this

fact, we developed �ve types of curves which have the

self-a�ne property. Furthermore, we made 'drawing-

curves' from these curves as 'visual language'. These

'drawing-curves' can be used as a 'common language'

between the designer, the modeler, and the operator of

CAD systems for communicating the 'design intent'.

1. Introduction

A curve is an important design element to de�ne the
overall shape of a product. And, drawing an aesthetic
curve is a requirement for a good designer.

In the �eld of engineering, the representation of a
curve on a computer has been studied, e.g., the curve
to use a parametric function was presented by Fergu-
son, Coons, and the like, and a spline function was
presented by B�ezier, Gordon, Riesenfeld, and the like
[1, 2, 3, 5]. However, in all these studies, a set of given
points that forms the locus of the curve was assumed
"absolute". In other words, the studies required that
the designer de�ne the precise locus of the curve by a
set of points.

In general, a designer wants to make a set of points
as smooth as possible, having some "rhythm". The
set of points is made rather roughly by hand, because
a designer can't control the points so precisely. Most

earlier studies on engineering discuss making a curve
only "smooth" in some mathematical sense through or
near these rough points. Therefore, the curve has no
"rhythm" in most cases.

A few studies [4, 8, 10, 11, 12] discussed what char-
acteristics made an aesthetic curve. For example, Pal
and Nutbourne presented an algorithm for the gen-
eration of a smooth curve through two data points
with speci�ed curvature and tangent directions at those
points. They argued that fair curve needed curva-
ture pro�le was designed to be piecewise linear, con-
structed from linear elements. On the basis of this
fact, they said that a fair curve form consisted of arcs of
Cornu spirals (clothoids). Further, Farouki presented
an algorithm for the generation of fair curve by the
use of Pythagorean-hodograph (PH) quintic transition
curves.

In this paper, we develop a method for analyzing
what characteristics made an aesthetic curve [6]. This
method use a relation between a length frequency of
the curve and a radius of the curvature in a log-log
coordinate system. By using our method, we analyze
many sample curves on the products (drafts) made and
drawn by designer's hands. As a result of this, we clar-
ify that there are a lot of curves that we can not rep-
resent by only arcs of Cornu spirals and PH spirals,
and the designer control the curvature change with a
self-a�ne property. Second, on the basis of the result
of this analysis, we develope an algorithm for gener-
ating a curve having self-a�ne properties. Then, by
using this algorithm, we can get not only ' deceler-
ating' curves like spirals but also 'accelerating' curves
by same parameters. There are not an algorithm for
getting 'accelerating' curves and 'decelerating' curves
uniformly, yet. And we get a new criterion for fair-
ness of curve by self-a�ne properties. In this way, our
viewpoint is di�erent from earlier ones.

Moreover, on the basis of this fact, we systematize
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points.

aesthetic curves, and attempt to make 'drawing-curves'
from these curves as 'visual language'. We apply these
'drawing-curves' to industrial design.

2. Quantitative analysis method

In this section we propose a quantitative analysis
method for the characteristics of a curve. We sup-
pose that the curve treated in this study, satis�es the
following 4 conditions: it is 1)plane, 2)open, 3)non-
intersecting, and 4)monotonic.

We analyzed the design words expert car designers
used to �nd what characteristics of a curve they pay
attention to. We found some words that expressed the
characteristics of a curve. Furthermore, from a view-
point of mathematics, the words were concerned with
curvature change and volume of a curve. Here, 'vol-
ume' is de�ned as the area bound by the curve and the
straight line binding the starting point and the end-
ing point of a curve (see Figure 1). Thus, we de�ne
that the characteristics of a curve means its curvature
change and volume in this study. In fact, when curva-
ture change and volume are de�ned, the curve is �xed
reversely.

We developed a method for analyzing the curvature
change and the volume of curves mathematically, si-
multaneously and intuitively. In this method, we in-
terpolate a sample curve using a B�ezier curve on a
computer and express the relation between the radius
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Figure 3. Logarithmic distribution diagram of cur-

vature.

of curvature at every constitutional point on the inter-
polated curve and the "length" of the curve showing
the total length of segmental curves corresponding to
this radius of curvature in a log-log coordinate system.
This is called a "logarithmic distribution diagram of
curvature". Now, let us explain it in detail as follows.

First, let us denote the total length of the curve by
Sall, the length of a segmental curve by sj, the radius of
curvature at a constitutional point ai by �i, and the in-
terval of the radius of the curvature by ��j (the units are
mm in all cases.). The radius of the curvature �i at the
constitutional point ai on the curve is obtained by ex-
tracting constitutional points (a1; a2; � � � ; an) at equal
intervals as shown in Figure 2 (e.g., Sall = 100mm, and
the constitutional points were extracted at 0.1mm in-
tervals in actual dimension, therefore, n=1000), and
by calculating the respective radii of the curvature
(�1; �2; � � � ; �n) at the respective constitutional points.

Second, let us denote the interval of the radii of
the curvature ��j by the interval corresponding to
the quotient obtained by dividing the common loga-
rithm [�3; 2] of the value �i=Sall [0:001; 100] by 100
equally (determined by surveying the range of the
curves adopted into actual cars). In other words,
��m = [�3 + 0:05(m � 1);�3 + 0:05m] (m is an inte-
ger between 1 and 100, i.e., 1 � m � 100).

Third, the numbers of occurrence of the common
logarithm values of �1=Sall; �2=Sall; � � � ; �n=Sall in each
interval of ��j is summed up. From this number (=Nj),
the length of the segmental curve sj (=distance be-
tween neighboring constitutional points �Nj) in which
the ��j appears, is calculated. This means that Sall =
s1 + s2 + � � � + s100. In addition, "length frequency"
�sj [= log

10
(sj=Sall)] was de�ned for representing the
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Figure 4. Two dimensionless circular arcs A and B.

ratio of the length of a segmental curve to the total
length of the curve Sall.

The "logarithmic distribution diagram of curvature"
de�ned above can be obtained by taking ��j for the
horizontal axis and �sj for the vertical axis, as shown in
Figure 3. In this �gure, numeric values of �i=Sall (mag-
ni�cation) and sj=Sall (%) are shown also in parenthe-
sis for convenience of understanding. To draw such a
"logarithmic distribution diagram of curvature" means
mathematically obtaining a locus of d�s=d�� in terms of
the interval of the radii of curvature, ��, and the length
frequency, �s.

In addition, the horizontal axis shows the interval
of the radius of the curvature ��, which is the radius
of the curvature � made dimensionless by dividing by
the total length Sall of the curve. The reason for this
can be explained as follows. If two circular arcs A and
B having the same curvature but di�erent lengths as
shown in Figure 4 are shown on the "logarithmic dis-
tribution diagram of curvature" without making � di-
mensionless by Sall, the locus of d�s=d�� for both A and
B will be shown at the same position. However, the de-
signer distinguishes the di�erence between the volumes
of dimensionless circular arcs A and B. Therefore, by
using � made dimensionless by Sall for the horizon-
tal axis and drawing the locus of d�s=d��, the positions
on the "logarithmic distribution diagram of curvature"
become di�erent according to the total lengths of the
curves even if they have the same curvature, showing
the di�erence in volume of both curves visually.

In this "logarithmic distribution diagram of curva-
ture", the way the curvature changes, is shown by the
locus of C curve shown in Figure 3, and the volume
of the curve is shown by the point A and the dis-
tance between the two points A and B as shown in
Figure 3. Here, if that distance is shorter, the volume
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Figure 5. The relation of ��j and �sj.

of the curve becomes larger. According to the volume,
if the curve is interpolated by B�ezier curves, the exact
value of the volume can be obtained directly by inte-
grating the interpolated curve. Therefore, this value is
used for getting an accurate value of the volume. In the
quantitative analysis described in this paper, however,
the de�nition of the volume mentioned above is used
as an index of relative change of the volume showing
the volume change among the sections when the plural
cross sections of a curved surface are to be analyzed
simultaneously.

Furthermore, the "gradient" of C curve in Figure 3
is de�ned by

"gradient" = d�s=d�� = dY=dX = lim
�X!0

�Y=�X

= lim(Yj�1 � Yj)=(Xj�1 �Xj)

= lim(�sj�1 � �sj)=(��j�1 � ��j):

In this paper, the "gradient" means the gradient af-
ter transforming the coordinate system to a X-Y rect-
angular coordinate system with the horizontal axis rep-
resenting X = ��j and the vertical axis Y = �sj. When
the "gradient" is a, the relation of the interval of the
radii of the curvature ��j and the length frequency �sj is
de�ned by

lim(�s1 � �s2)=(��1 � ��2) = � � � = lim(�sj�1 � �sj)=(��j�1 � ��j)

= a (as shown in Figure 5):

Here, if the "gradient" is constant, then the curve
has a self-a�ne property(see Figure 6).

3 "Gradients" of C curves of important
functions

In this section, we calculate the "gradients" of C
curves of important functions in the �eld of industrial
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design, mathematically. Firstly, let us calculate the
"gradient" of the C curve of parabola mathematically.
[Parabola]

A parabola is de�ned by

y = ax2: (1)

When a curve f (x) is second times continuously dif-
ferentiable, the radius of the curvature � is given by

� =
(1 + f 0(x)2)3=2

jf 00(x)j
: (2)

Substituting Eq.(1) into Eq.(2), we obtain

� =
(1 + 4a2x2)3=2

j2aj
: (3)

Squaring both sides of Eq.(3), we obtain

(2a�)2 = (1 + 4a2x2)3;

that is,

(2a�)2=3 = (1 + 4a2x2): (4)

When x is su�ciently large, 4a2x2 � 1, and 1 +
4a2x2 �= 4a2x2. In this case, Eq.(4) is expressed as

(2a�)2=3 = 4a2x2: (5)

When both sides are expressed logarithmically,

2=3(log2 + log a+ log �) = log 4 + log a+ log ax2: (6)

The length of the segmental curve s in an 'interval of
radius of curvature' is de�ned as

s =

Z
(1 + f 0(x)2)1=2dx; (7)

that is,
ds=dx = (1 + f 0(x)2)1=2: (8)

Substituting Eq.(1) into Eq.(8), we obtain

ds=dx = (1 + 4a2x2)1=2 �= 2ax; (9)

that is, Z
ds =

Z
2axdx+ c; (10)

where c is an arbitrary constant. When x is su�ciently
large, the arbitrary constant is negligible. In this case,
Eq.(10) is expressed as

s = ax2: (11)

Substituting Eq.(11) in Eq.(6), we obtain

2=3(log 2 + log a+ log �) = log4 + loga+ logs: (12)

By setting X = log �, Y = log s, we obtain

c1 + c2 + 2=3X = c3 + c4 + Y; (13)

that is,

Y = 2=3�X + C (C = c1 + c2 � c3� c4): (14)

Here, Figure 3 is a result of the analysis for a
parabola. The "gradient" of the C curve in Figure 3
is 2=3, which is consistent with the result calculated
above.

In a similar way, the "gradients" of C curves of sine
curve, equiangular spiral, and logarithmic curve, were
calculated as follows.
[Sine curve]

A sine curve is de�ned by

y = a sinx: (15)

Since, this curve is second times continuously di�er-
entiable, it is possible to calculate the radius of the cur-
vature � by Eq.(2). Substituting Eq.(15) into Eq.(2),
we obtain

� =
(1 + a2 cos2 x)3=2

j � a sinxj
; (16)

that is,
�a sinx = (1 + a2 cos2 x)3=2: (17)

The length of segmental curve s in an 'interval of radius
of curvature' is de�ned asZ

ds =

Z
(1 + a2cos2x)1=2dx (18)

In the neighborhood of x = 0



As a sine curve where a � 0 is adopted in de-
sign generally, we can set 1 + a2 cos2 x �= a2cos2x, and
Eq.(18) is expressed as

s =

Z
a cosxdx = a sinx: (19)

Substituting Eq.(17) in Eq.(19), we obtain

s� = (a2cos2x)3=2: (20)

When both sides are expressed logarithmically,

log(s�) = log(a2 � a2 sin2 x)3=2: (21)

As sin2x� 1 near x = 0, a2 � a2sin2x �= a2,

log s + log � =
3

2
log a2: (22)

By setting X = log �, Y = log s, we obtain

Y = �1�X + C: (23)

In the neighborhood of x = �=4
In this neighborhood, x �= �=4, and cosx �= 0:70. As

a � 0, 1 + a2 cos2 x �= a2 cos2 x. Eq.(19) can be used
as it is. In the same way, Eq.(16) is expressed as

� =
(a2 cos2 x)3=2

a sinx
; (24)

therefore,

log � = 3 log(a cosx)� log(a sinx): (25)

In the neighborhood of x = �=4, sinx �= cosx.
Then, we obtain

log � = 2 log(a sinx); (26)

that is,
Y = 1=2�X: (27)

In the neighborhood of x = �=2
As cosx � 1, a cosx � 1, and 1 + a2 cos2 x �= 1.

Eq.(18) is expressed as

Z
ds =

Z
(1 + a2 cos2 x)1=2dx =

Z
1dx = x: (28)

In the same way, Eq.(16) is expressed as

� =
1

(a2 � a2 cos2 x)1=2
=

1

a
: (29)

Then,
log � = C: (30)

This result shows that the curve is a circular arc
having some radius of curvature, and the "gradient" of
the C curve becomes in�nity, i.e., vertical.
[Equiangular spiral]

This curve is de�ned by

x = aeb� cos �
y = aeb� sin �

�
: (31)

This curve is second times continuously di�eren-
tiable, and as this curve is expressed by the param-
eters (x = �(t); y = '(t)), it is possible to calculate the
radius of curvature � by

� =
(�0(t)2 + '0(t)2)3=2

j�0(t)'00(t)� �00(t)'0(t)j
: (32)

Substituting Eq.(31) in Eq.(32), we obtain

� =
(a2e2b�(1 + b2))3=2

a2e2b�(1 + b2)
= aeb�(1 + b2)1=2: (33)

The length of segmental curve s in an 'interval of radius
of curvature' is de�ned as

s =

Z
(�0(t)2 + '0(t)2)1=2dx: (34)

And, the relation between s and � is expressed by

s =

Z
ds =

Z
aeb�(1 + b2)1=2d� =

aeb�(1 + b2)1=2

b
:

(35)
Substituting Eq.(33) in Eq.(35), we obtain

s =
�

b
: (36)

When both sides are expressed logarithmically,

log � = log s+ log b; (37)

that is,
Y = 1 �X + C: (38)

[Logarithmic curve]
This curve is de�ned by

y = a logx: (39)

Since this curve is second times continuously di�er-
entiable, it is possible to calculate the radius of curva-
ture � by Eq.(2). Substituting Eq.(39) in Eq.(2), we
obtain

� =
(1 + a2=x2)3=2

j � a=x2j
; (40)

that is,
a� = x2(1 + a2=x2)3=2: (41)



The length of segmental curve s in an 'interval of radius
of curvature' is de�ned as

s =

Z
(1 + a2=x2)1=2dx: (42)

As a logarithmic curve in a region where x � a >
1 is adopted in design generally, 1 + a2=x2 �= 1, and
Eq.(42) is expressed as

s =

Z
ds =

Z
dx = x: (43)

Substituting Eq.(43) in Eq.(41), we obtain

a� = x2(1 + a2=x2)3=2 = x2 = s2; (44)

because 1+a2=x2 �= 1. When both sides are expressed
logarithmically,

log a+ log � = 2 log s; (45)

that is,
Y = 1=2�X + C: (46)

As mentioned above, the "gradient" of several C
curves could be calculated mathematically. When a
C curve has some constant "gradient", it is possible
to estimate the mathematical expression of the sample
curve.

4. Analysises of sample curves

We analyzed more than one hundred sample curves
drawn by expert car designers by using this quanti-
tative analysis method, and studied what characteris-
tics of a curve designer controlled to make an aesthetic
curve.

As a result, we could classify these curves into four
typical types. Here, we took a car as the motif in this
study, because we con�rmed that the appearance of a
car is important for potential buyers, and hence, car
designers were very sensitive to the curve.

Four typical types of "logarithmic distribution dia-
gram of curvature" for curves are shown in Figures 7-
10. Let us discuss these curves as follows.
[Analysis of curve 1]

This curve is the section line of a bonnet-hood of a
Japanese car drawn by a designer. The result of anal-
ysis by our method is shown in Figure 7. From this
result, we estimated he attempted to draw a curve as
C curve consisting of a straight-line of "gradient"=1/2.
It can be considered that this curve is roughly a log-
arithmic curve. However, we also con�rmed that this
curve contains ' noise' caused by hand drawing. Most
curves of Japanese cars belong to this type.

 

Figure 7. A result of the analysis of curve 1.

 

Figure 8. A result of the analysis of curve 2.

[Analysis of curve 2]

This curve is the section line of a bonnet-hood of a
Japanese car drawn by a designer. The result of anal-
ysis by our method is shown in Figure 8. From this
result, we estimated he attempted to draw the curve
as C curve consisting of two straight-lines of "gradi-
ent"=0. However, we also con�rmed that this curve
contains ' noise' caused by hand drawing.

[Analysis of curve 3]

This curve is the section line of a bonnet-hood of an
Italian car drawn by a designer. The result of analysis
by our method is shown in Figure 9. From this result,
we estimated he attempt to draw the curve as C curve

consisting of a straight-line of "gradient"= -1. It can



 

Figure 9. A result of the analysis of curve 3.

 

 

Figure 10. A result of the analysis of curve 4.

be considered that this curve is roughly a part of a sine
curve.
[Analysis of curve 4]

This curve is the outline of a bonnet-hood of an Ital-
ian car drawn by a designer. The result of analysis by
our method is shown in Figure 10. From this result, we
gathered the designer attempted to draw the curve as
C curve consisting of two straight-lines of "gradient"=
-1 and "gradient"= 2/3. It can be considered that this
curve is roughly combined with a parabola and a part
of a sine curve. However, we also con�rm that that
curve contains ' noise' caused by hand drawing.

Through these analyses of four typical types of
curves, we can abstract three common points.
1) A designer attempts to draw curves having the prop-

erty that the C curves consist of one or two straight-
lines of some "gradient" in the "logarithmic distribu-
tion diagram of curvature". However, as mentioned
above, the C curves contained ' noise' and were not
smooth. In other words, we con�rm it is very di�-
cult for a designer to draw a curve having the property
that C curve consists of one or two straight-lines, i.e.,
having a precise self-a�ne property.
2) Most C curves have one or two straight-lines with a '
plus' or 'minus' or '0' "gradient" sign. This fact means
that the designer aims to draw the curve as making
the simplest shape and having a self-a�ne property.
In other words, we can conclude that the designer rec-
ognizes a curve having a self-a�ne property as an aes-
thetic curve.
3) Curves 1 and 2 are Japanese car's, and curves 3 and
4 are Italian car's. We compared the two, and found
that they had each characteristic inherent in national-
ity. An Japanese car designer prefer the 'decelerating'
curve like parabola. An Italian car designer prefer the
'accelerating' curve as C curve consisting of a straight-
line of "gradient"= -1.

5. Systematization of curves and appli-
cations

In this section, we systematize curves for design on
the basis of our results above, and discuss impressions
of these curves.

We con�rmed that the impression of a curve was dif-
ferent according to what "gradient" sign is (i.e., 'plus'
or 'minus' or '0') mainly by analyzing many samples.
In fact the impressions of two curves are the same ir-
respective of "gradient", if "gradient" signs are both
'plus'.

Consequently, we could systematize and classify
curves into the �ve types as shown in Figure 11. Fig-
ure 11 also shows the impressions of curves. Four of the
�ve types are generalized by using the results above.
The type of 'plus + minus' was not abstracted from
the curves of actual cars. However we include the type
of 'plus + minus', because the sine curve belongs to this
type, and we con�rm a curve of this type must be use-
ful. Here, we shall call a curve as its C curve with one
straight-line a 'monotonic-rhythm curve' and that with
two straight-lines a 'compound-rhythm curve'. Fur-
thermore, we developed a method to get any curve
among the �ve types(any set of points representing the
locus of a curve) having any volume, mathematically
[6, 7]. The curves shown in Figure 11 were made by this
method. In addition, we couldn't abstract a C curve

with more than three straight-lines of some constant
"gradient". On the basis of this fact, we consider that
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Figure 11. A systematization of curves and their impressions: The 5 basic types of an aesthetic curve.



Figure 12. 'drawing-curves' of 'minus' type.

Figure 13. 'drawing-curves' of '0' type.

these curves are not aesthetic. Actually, the curvature
change is complex.

Accordingly, we consider the aesthetic curve(limited
to a monotonic curve) a designer aims to draw as be-
longings to one of the �ve types. Furthermore, we
propose a new method, where the �ve types of curves
shown in Figure 11 are used as 'visual language' [9],
and an aesthetic curve is made by using that 'visual
language'.

We made 'drawing-curves' from above curves as 'vi-
sual language'(see Figure 12-14). These ' drawing-
curves' can be used as a 'common language' between
the designer, the modeler, and the operator of CAD
systems for communicating the ' design intent'. We
applied 'drawing-curves' to car design. Through a lot
of simulations, we con�rmed that 'drawing-curves' was
a very useful tool for design work, i.e., we can make
a curve and a shape e�ciently by using that 'visual
language'.

Figure 14. 'drawing-curves' of 'plus' type.

6. Conclusions

The fruits of this study are as follows. 1)When the
designer de�nes a curve, the curvature change and the
volume are controlled as the major characteristics of
the curve. We proposed a mathematical method for
quantifying the characteristics of the curve. By using
the method, we can analyze the curve from a new as-
pect not discussed in former studies. 2)A lot of curves
adopted into actual cars, were analyzed by this quan-
titative analysis method. As a result, we con�rmed
the designer aimed to draw the curve as having a self-
a�ne property, i.e., the designer thought that such a
curve was aesthetic. 3)We proposed �ve types of curves
with self-a�ne property as 'visual language'. We made
'drawing-curves' from these curves as 'visual language'.
We applied 'drawing-curves' to car design. As a result,
we con�rmed that 'drawing-curves' was a very useful
tool for design work.

We have a few subjects for future work as follows.
At present, we are implementing our algorithm on a
computer and developing a prototype system for mak-
ing curves by using our 'visual language' in CAD sys-
tems. For this system, it is important to develop a
good GUI(graphical user interface) of operations for
making a curve by using our 'visual language'. For
that purpose, we have to analyze works design curves
and surfaces. Further, we have to verify possibility of
designer's accepting.
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